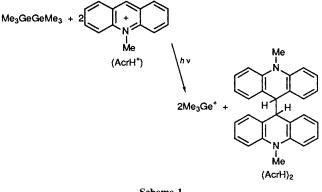
Photo-induced One-electron Reduction of 10-Methylacridinium Ion with Group 14 Dimetallic Compounds using Visible Irradiation

Shunichi Fukuzumi,*a Toshiaki Kitano,a and Kunio Mochidab

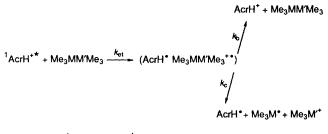

^a Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan ^b Department of Chemistry, Faculty of Sciences, Gakushuin University, Mejiro, Tokyo 171, Japan

Efficient one-electron reduction of the 10-methylacridinium ion, with group 14 dimetallic compounds ($Me_3MM'Me_3$; M, M' = Sn, Ge, Si), is initiated by electron transfer to the singlet excited state of the 10-methylacridinium ion in acetonitrile with irradiation by visible light to yield 10,10'-dimethyl-9,9'-biacridine selectively.

One-electron reduction of cationic substrates such as pyridinium ions is usually made possible by electrochemical methods, or by electron transfer from one-electron reductants, followed by the dimerization of the resulting radicals to yield the corresponding dimers.^{1,2} There was no report on the selective one-electron reduction of cationic substrates by two-electron reductants until we reported recently that selective one-electron reduction of a cationic substrate, 10-methylacridinium ion (AcrH⁺) occurs thermally by group 14 dimetallic compounds containing Sn (e.g. Me₃SnSnMe₃, Me₃SnSiMe₃),³ which are known to be good two-electron σ -donors.⁴ However, the group 14 dimetallic compounds which do not contain Sn show no reactivity towards AcrH+ thermally.³ This study reports that the one-electron reduction of AcrH⁺ occurs efficiently with various group 14 dimetallic compounds (Me₃MM'Me₃; M, M' = Sn, Ge, Si), under the irradiation by visible light ($\lambda > 360$ nm), to yield the 10,10'-dimethyl-9,9'-biacridine corresponding dimer, $(AcrH)_2$.†

Irradiation of the absorption band (λ_{max} . 417 nm) of AcrH+ (4.0 × 10⁻² mol dm⁻³) in deaerated acetonitrile containing Me₃GeGeMe₃ (4.0 × 10⁻² mol dm⁻³), using a xenon lamp for 6 h results in the formation of the dimer, 10,10'-dimethyl-9,9'- biacridine and Me_3GeClO_4 (90% yield) (Scheme 1). The photo-induced one-electron reduction of AcrH⁺ also occurs with other group 14 dimetallic compounds ($Me_3GeSiMe_3$, $Me_3SnSiMe_3$, $Me_3SnSnMe_3$), except for $Me_3SiSiMe_3$ which results in a photo-induced two-electron reduction of AcrH⁺ to give 9,10-dihydro-9-trimethylsilyl-10-methylacridine AcrH-(SiMe_3).⁵

The dependence of the quantum yield ϕ , determined using a ferrioxolate actinometer⁶ with 358 nm irradiation, on [Me₃MM'Me₃] is given by equation (1), where k_{obs} is the


Scheme 1

 $[\]dagger$ Satisfactory elemental analysis was obtained for (AcrH)_2. 1H NMR (CDCl₃, 400 MHz) δ 3.06 (6H, s), 3.99 (2H, s), and 6.5—7.3 (16H, m); Me_3GeClO_4 (CD_3CN) δ 0.79 (9H, s).

Table 1. Limiting quantum yields (ϕ_{∞}) , rate constants k_{obs} , k_q , k_{et} , $(dm^3 \mod^{-1} s^{-1})$ one-electron oxidation potentials $(E_{ox}^0 vs. s.c.e.)$ of Me₃MM'Me₃, and the estimated ratio of the rate constants, $k_c/(k_c + k_b)$, for the photo-induced reduction of AcrH⁺ by Me₃MM'Me₃.

Me ₃ MM'Me ₃	ф∞	$E_{ m ox}^0/ m V^a$	k_{obs}	$k_{ m q}$	$k_{\rm et}^{\rm b}$	$rac{k_{ m c}}{(k_{ m c}+k_{ m b})^{ m c}}$
Me ₃ SiSiMe ₃	0.038	0.92	$7.1 imes 10^9$	$7.1 imes 10^{9}$	$8.7 imes10^9$	0.042
Me ₃ GeSiMe ₃	0.043	0.88	$8.7 imes 10^{9}$	9.1×10^{9}	$8.9 imes 10^9$	0.048
Me ₃ GeGeMe ₃	0.039	0.84	$9.0 imes 10^{9}$	$9.3 imes 10^{9}$	$9.2 imes 10^{9}$	0.057
Me ₃ SnSiMe ₃	0.11	0.82	$9.6 imes 10^{9}$	$9.8 imes 10^{9}$	$9.3 imes 10^{9}$	0.062
Me ₃ SnSnMe ₃	0.13	0.68	$1.2 imes 10^{10}$	$1.2 imes 10^{10}$	$9.6 imes 10^9$	0.13

^a The E_{ox}^{0} values have been determined by the analyses of cyclic voltammograms according to the method reported previously.^{8,12} ^b Calculated by applying the Marcus theory;⁹ the effect of diffusion on the k_{et} values is taken into account by using the equation $k_{\text{et}} = k_{\text{diff}}/[1 + 0.25 \exp(\Delta G^{+}_{\text{et}}/\text{RT})]$,¹⁰ where k_{diff} is taken as 1.2×10^{10} dm³ mol⁻¹ s⁻¹. ^c The k_{b} values are also calculated by applying the Marcus theory, see text.

 $Me_3M^{\bullet} + AcrH^{\bullet} - - - - Me_3M^{\bullet} + AcrH^{\bullet}$

2AcrH · --- (AcrH)2

Scheme 2

quenching rate constant of the excited state of AcrH⁺ in the photoreduction of AcrH⁺ and τ is the lifetime of the singlet excited state (τ 31 ns).^{7,8} From the linear plots of ϕ^{-1} vs. [Me₃MM'Me₃]⁻¹, the ϕ_{∞} and k_{obs} values are obtained which are listed in Table 1, together with the one-electron oxidation potentials of Me₃MM'Me₃ (E_{0x}^{o}).³

The fluorescence of AcrH⁺ (λ_{max} 490 nm) is quenched by Me₃MM'Me₃ in MeCN at 298 K. The quenching rate constants k_q determined from the slopes of the Stern-Volmer plots, and the lifetime of the singlet excited state $^{1}AcrH^{+*}$ (τ 31 ns)^{7,8} are also listed in Table 1, where the k_{obs} values agree well with the corresponding k_q values and also the calculated rate constants k_{et} of electron transfer from Me₃MM'Me₃ to ¹AcrH^{+*}. The k_{et} values were calculated from the E_{ox}^0 values, the one-electron reduction potential of ${}^{1}\text{AcrH}{}^{+*}$ [E_{red}^{0} 2.3 V vs. standard calomel electrode (s.c.e.)]⁸ and the reorganization energy $(\lambda 38 \text{ kcal mol}^{-1})^3$ by using Marcus theory (Table 1).9 Although such agreements, with values being close to the diffusion limit, are expected for highly exergonic electrontransfer reactions, the agreement suggests that the photoinduced one-electron reduction is initiated by electron transfer from Me₃MM'Me₃ to the singlet excited state ¹AcrH^{+*} as shown in Scheme 2. Since the one-electron oxidation of Me₃MM'Me₃ is known to result in the facile cleavage of metal-metal bonds,11 electron transfer may yield the metalcentred radical Me₃M[•] which has strong reducing ability. Another AcrH⁺ molecule may be reduced by Me₃M[•] to produce AcrH' which dimerizes to yield the one-electron reduced product $(AcrH)_2$, [with Me₃SiSiMe₃ the radical coupling of Me₃Si[•] and AcrH[•] may occur to give AcrH(SiMe₃) because of the lower reducing ability of Me₃Si[•] compared with Me₃Sn[•] and Me₃Ge[•]].⁵ According to Scheme 2, the limiting quantum yield (ϕ_{∞}) may be determined by the competition between the back electron transfer from AcrH[•] to $Me_3MM'Me_3^{+*}(k_b)$ and the cleavage of metal-metal bonds of $Me_3MM'Me_3^{+*}(k_c)$ as given by equation (2). The k_b values can also be calculated from the E_{0x}^0 values, the one-electron reduction potential of AcrH⁺ (E_{red}^0 –0.43 V),¹² and the λ values by using Marcus theory. The $k_c/(k_c + k_b)$ values may then be estimated from the k_b values by using equation (2) in which the k_c values are assumed to be the same (1.6 × 10¹¹ s⁻¹). The $k_c/(k_c + k_b)$ values agree reasonably well with the observed variation of ϕ_{∞} values depending on Me₃MM'Me₃ (Table 1), demonstrating the validity of Scheme 1.

$$\phi^{-1} = \phi_{\infty}^{-1} \{ [1 + (k_{\text{obs}} \tau [\text{Me}_3 \text{MM}' \text{Me}_3])^{-1} \}$$
(1)

$$\phi_{\infty} = k_{\rm c}/(k_{\rm c} + k_{\rm b}) \tag{2}$$

This work was supported in part by a Grant-in-Aid (to S. F.) for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Received, 22nd March 1990; Com. 0/01260B

References

- 1 P. J. Elving, 'Topics in Bioelectrochemistry and Bioenergetics,' ed. G. Milazzo, vol. 1, Wiley, New York, 1976, p. 179.
- 2 E. M. Kosower, 'Free Radicals in Biology,' ed. W. A. Pryor, vol. II, Academic Press, New York, 1976, ch. 1.
- 3 S. Fukuzumi, T. Kitano, and K. Mochida, J. Am. Chem. Soc., 1990, 112, 3246.
- 4 J. K. Kochi, 'Organometallic Mechanisms and Catalysis,' Academic Press, New York, 1978, ch. 15; H. Sakurai, J. Organomet. Chem., 1980, 200, 261.
- 5 S. Fukuzumi, T. Kitano, and K. Mochida, Chem. Lett., 1989, 2177.
- 6 C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A., 1956, 235, 518.
- 7 A. T. Poulos, G. S. Hammond, and M. E. Burton, *Photochem. Photobiol.*, 1981, 34, 169; H. Gebert, W. Regenstein, J. Bending, and D. Kreysig, Z. Phys. Chem. (Leipzig), 1982, 263, 65.
- 8 S. Fukuzumi and T. Tanaka, 'Photoinduced Electron Transfer,' ed. M. A. Fox and M. Chanon, Part C, Elsevier, Amsterdam, 1988, ch. 10.
- 9 R. A. Marcus, Ann. Rev. Phys. Chem., 1964, 15, 155; L. Eberson, Adv. Phys. Org. Chem., 1982, 18, 79.
- 10 D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259.
- 11 M. C. R. Symons, *Chem. Soc. Rev.*, 1984, **13**, 393; B. W. Walther, F. Williams, W. Lau, and J. K. Kochi, *Organometallics*, 1983, **2**, 688.
- 12 S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305.